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The current-modified nonlinear
Schrödinger equation
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(Received 22 March 1999 and in revised form 2 August 1999)

By comparison with both experimental and numerical data, Dysthe’s (1979) O(ε4)
modified nonlinear Schrödinger equation has been shown to model the evolution
of a slowly varying wavetrain well (here ε is the wave steepness). In this work, we
extend the equation to include a prescribed, large-scale, O(ε2) surface current which
varies about a mean value. As an introduction, a heuristic derivation of the O(ε3)
current-modified equation, used by Bakhanov et al. (1996), is given, before a more
formal approach is used to derive the O(ε4) equation. Numerical solutions of the new
equations are compared in one horizontal dimension with those from a fully nonlinear
solver for velocity potential in the specific case of a sinusoidal surface current, such
as may be due to an underlying internal wave. The comparisons are encouraging,
especially for the O(ε4) equation.

1. Introduction
The effect of a surface current on propagating surface gravity waves is of interest.

One may wish to ‘read’ the surface pattern (by eye, or using radar) and determine
the current strength and direction below. The interaction between water waves and
currents has been the subject of two substantial reviews: Peregrine (1976) discusses
many topics including a section on both large- and small-scale currents and Jonsson
(1990) concentrates more on the effects of currents in ocean and coastal areas.

Here we consider surface waves that are short compared with the length scale
of the surface current field. Hence, we are able to assume that the wave properties
are generally slowly varying. The typical simple model for such short-wave/high-
frequency circumstances is that of ‘ray’ or ‘geometric’ theory. Although we discuss
such solutions, the main thrust of this paper is to present a better model which
allows for steeper waves with the scope for good description of somewhat shorter
modulations.

The first set of complete equations to describe short waves propagating over much
larger scale non-uniform currents were given by Longuet-Higgins & Stewart (1964).
Wave energy is not conserved and the concept of ‘radiation stress’ was introduced
to describe the averaged momentum flux terms which govern the interchange of
momentum with the current. In this present work, we assume that the effect of
this momentum transfer on the form of the surface current is negligible. Following
Whitham’s (1965, 1967) development of a method of averaging for nonlinear waves,
and the use of an averaged Lagrangian, Bretherton & Garrett (1968) developed the
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concept of wave action. Wave action is conserved for many non-dissipative systems
where waves interact with currents.

The motivation for this work was to continue the study of internal waves and
currents – see Donato, Peregrine & Stocker (1999, hereafter referred to as DPS) for
further discussion. In summary, for a simple but representative initial condition, we
made a detailed investigation into the effect of two-dimensional interaction between
long internal waves and short surface waves of initially uniform wavenumber. Linear
ray theory was used to investigate the effect of differing currents and shorter waves
on the time and positioning of the focus of the waves. Also, fully nonlinear solutions
have been compared with results from the linear ray theory, and an investigation
into time of breaking (an essentially nonlinear phenomena) was made using the fully
nonlinear code.

The nonlinear Schrödinger (NLS) equation governs the modulations of weakly
nonlinear water waves. The derivation of the NLS equation also includes an assump-
tion that wave properties must be slowly varying; this is similar to ray theory, but
corresponds to an improved approximation, as long as the waves do not vary greatly
from a fixed mean value of wavenumber and frequency, in contrast to the ray theory,
where wavenumber and frequency can vary significantly on the larger scale. The
standard NLS equation is valid to O(ε3), where ε = ak, the wave steepness, is taken
as a small parameter. More than one method can be used to derive the NLS equation
for deep water waves. Yuen & Lake (1982) used an averaged Lagrangian method,
Zakharov (1968) used a spectral method and Hasimoto & Ono (1972) and Davey
& Stewartson (1974) used a multiple scales method. Dysthe (1979) extends the O(ε3)
equation to the ‘modified nonlinear Schrödinger equation’ (MNLS), which is valid
to O(ε4) for deep water waves, using a multiple scales approach. This form of the
NLS takes account of the small mean flow brought about by the radiation stresses of
the modulated wavetrain. The potential due to this induced deep water current is of
O(ε2), and in the present work we force the system with a large-scale, slowly varying
velocity potential of O(ε), which gives a current of O(ε2). Brinch-Nielsen, in her thesis
(1985), discusses the Dysthe (1979) paper in detail, considering all Fourier modes and
finds one minor discrepancy (aside from typographical errors), as well as consistent
forms for the resultant surface elevation in terms of the complex amplitude of the
wave potential, B, obtained from the nonlinear Schrödinger equation. This thesis is
useful for comparison purposes.

Previous work with this approach to wave–current interactions includes Bakhanov
et al. (1996) which briefly introduces the O(ε3) current-modified nonlinear Schrödinger
equation in one horizontal dimension (with a sinusoidal current) and gives details
of an example in two horizontal dimensions, with a submerged moving point dipole.
Bakhanov et al. (1997) compared results from the O(ε3) equation to experiment, with
initial findings that are encouraging.

Trulsen & Dysthe (1996) extended the O(ε4) MNLS equation to apply to waves
with a broader bandwidth. Specifically, the standard O(ε3) and O(ε4) equations are
valid for |∆k|/k = O(ε), where |∆k| is a modulation wavenumber vector and k is the
magnitude of the wavenumber vector k. The broader bandwidth equation is valid
for |∆k|/k = O(ε1/2) making it more suitable for application to a realistic three-
dimensional ocean wave spectrum. The broader bandwidth terms do not affect the
one-dimensional solutions, i.e. the (x, t) equation.

There are a number of numerical methods for solving the NLS equation. Lo &
Mei (1985) published a method to solve Dysthe’s O(ε4) equation and compared
their results with experiment. Weidman & Herbst (1986) used a split-step method to
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solve the O(ε3) equation, using both a Fourier method (applicable only to periodic
problems) and a finite difference method (which can be used for problems set in
non-periodic domains). These methods are employed to solve the current-modified
NLS equations derived here. It should be noted that Ablowitz & Herbst (1990) warn
that non-physical chaotic behaviour may occur when numerical approximations are
insufficiently accurate.

The fully nonlinear two-dimensional potential flow problem corresponding to the
one-dimensional NLS equations, may be solved numerically using a boundary integral
method. The code of Dold & Peregrine (1986) and Dold (1992), which applies this
method, has been adapted to include a potential to generate a periodic surface current,
as described in DPS, and these results are useful for comparison with numerical
solutions of the current-modified nonlinear Schrödinger equation. We present results
from these calculations.

In the present paper we take as an example of a surface current that due to
an internal wave which may have been caused by tidal flow over the edge of the
continental shelf, or else on a smaller scale, by flow in estuarine regions. These internal
waves are approximately periodic and therefore generate periodic surface currents,
which are sinusoidal if the internal wave is taken to be linear. The surface waves are
assumed to be sufficiently short that they are unaffected by any stratification of water
density, or vertical variation of current or water depth.

In § 2, a heuristic derivation of the O(ε3) current-modified NLS equation is pre-
sented, following a method discussed by Yuen & Lake (1982). In § 3, a more formal
approach is adopted following Dysthe (1979) and Brinch-Nielsen (1985) to derive
the O(ε4) current-modified equation. In § 4 a specific current is considered and the
range of validity of the equations discussed. Results showing comparison of surface
profiles with fully nonlinear results in one horizontal dimension are given in § 5. A
discussion of when the equation is valid is included. Our conclusions are given in § 6.
The Appendix gives further details of the derivation of the O(ε4) current-modified
NLS equation.

2. Derivation of the O(ε3) evolution equation
Consider perturbations from a carrier wave with frequency ω0 and wavenumber

vector k0. We take a slowly varying, periodic currentU (x, t) and consider perturbations
from a fixed value of the current U= (U0, V0). The dispersion relation for the carrier
wave on the basic current then takes the form

ω0 = U · k0 ± σ(k0), (1)

where k0 = | k0|, and σ(k0) is the frequency of the carrier wave relative to a reference
frame moving with the water. The positive root in equation (1) is chosen so as to
select waves travelling relative to the water in the positive k0 direction at speed
c0 = +(g/k0)

1/2. Consider weakly nonlinear perturbations to this wavetrain such that
ε = ak � 1 where a is wave amplitude, k is the wavenumber and k = |k|. The
frequency, ω and wavenumber are then governed by the relation

ω = U · k + (gk)1/2
[
1 + 1

2
(ak)2 + O((ak)4)

]
, (2)

where Stokes relation for the frequency dispersion has been used (for example see
Lamb 1932). The frequency and wavenumber are expanded to first order in terms of
ε, and the current U is given an O(ε2) perturbation, described by

ω = ω0 + ω1, k = k0i + (l, m) and U = U + (U1(x, t), V1(x, t)), (3)
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where ω1, l and m are O(ε) and U1, V1 are O(ε2). Including terms up to O(ε2), we
obtain

ω1 − cg0l −U0l − V0m+
(gk0)

1/2

k2
0

(
1
8
l2 − 1

4
m2
)− k2

0(gk0)
1/2

2
a2 − k0U1 = O(ε3). (4)

The group velocity of the carrier wave in the absence of a current is cg0 = 1
2
(g/k0)

1/2.
Following Yuen & Lake’s (1982) method, we make the direct correspondence

ω1 = i
∂

∂t
, −l = i

∂

∂x
and − m = i

∂

∂y
(5)

which can be made rigorous for a linear, homogeneous wave system of uniform
properties. However, when we are including a non-uniform current, the second and
third relationships of (5) are not accurate unless ∇U1 and ∇V1 are negligible; the
rigorous analysis in the next section shows that this is indeed the case for the expansion
in equation (3). The correspondence (5) and equation (4) lead to the operator

P = i

[
∂

∂t
+ cg0

∂

∂x
+U0

∂

∂x
+ V0

∂

∂y

]
− (gk0)

1/2

k2
0

[
1

8

∂2

∂x2
− 1

4

∂2

∂y2

]
− k

2
0(gk0)

1/2

2
a2−k0U1,

(6)

which can be applied to the complex wave envelope A so that P(A) = 0. In the frame
of reference moving with velocity (cg0 +U0, V0), we have

iAt − (gk0)
1/2

k2
0

[
1
8
AXX − 1

4
AY Y

]− k2
0(gk0)

1/2

2
A|A|2 − k0U1A = 0, (7)

where X = x − {cg0 +U0} t, Y = y − V0t and the suffix notation for derivatives has
been adopted.

It is sensible to make the amplitude, length and time scales dimensionless using
the length and time scales respectively of the carrier wave. So, defining A = k0A,
X = k0X, Y = k0Y and T = (gk0)

1/2t, equation (7) is replaced by

iAT − 1
8
AXX + 1

4
AY Y − 1

2
A|A|2 − f(X,Y , T )A = 0 (8)

where f(X,Y , T ) is the x-component of the non-dimensional current variation. This
reduces equation (8) to a standard form of the NLS when U≡ 0.

As is the case in the absence of a current, we find that for steeper waves, equation
(8) does not accurately model the nonlinear interactions; in particular it does not give
a good prediction for the speed of wave groups. We therefore extend the equation
to a higher order in wave steepness, ε = ak, which includes the small mean flow
brought about by radiation stresses of the modulated wavetrain, as well as further
terms involving the large-scale surface current.

3. Higher-order terms (up to O(ε4))
In order to model steeper and shorter wave packets, we consider higher-order terms

in the expansion, and take a more formal approach to the analysis. Let φ be the
velocity potential for the flow and ζ the corresponding surface elevation. We basically
follow Dysthe (1979) but also take note of the work by Brinch-Nielsen (1985) who
studied the Dysthe analysis in detail and found minor discrepancies. Brinch-Nielsen
used the Bernoulli equation in place of Dysthe’s equation (2.3) and we follow this
approach as the analysis is simplified somewhat. Our equations are considered in a
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frame of reference moving with velocity U , which is constant and taken to be −V .
The governing equations for the flow, in which waves and current are taken to be
irrotational so that we can work with a velocity potential, are

z 6 ζ, ∇2φ = 0, (9)

z = ζ,

(
∂

∂t
− V · ∇h

)2

φ+ g
∂φ

∂z
+

(
∂

∂t
− V · ∇h

)
(∇φ)2 + 1

2
∇φ · ∇(∇φ)2 = 0, (10)

z = ζ,

(
∂

∂t
− V · ∇h

)
φ+ gζ + 1

2
(∇φ)2 = 0, (11)

z → −∞, ∂φ

∂z
= 0, (12)

where g is acceleration due to gravity and z is the vertical coordinate measured
downwards from the equilibrium position. Equation (9) is Laplace’s equation, (10)
is a combined form of the Bernoulli and kinematic boundary conditions at the free
surface which is convenient to use as it does not involve ζ explicitly, and (11) is the
surface pressure condition, using the Bernoulli equation. The expressions in (10) and
(11) are expanded as a Taylor series about z = 0 in order to give values at z = ζ,
using the fact that ζ = O(ε). As equation (10) is used to derive the governing equation
for the complex potential, B, terms up to and including O(ε4) are included whereas
equation (11) is used to obtain an expression for ζ, the surface elevation, so terms up
to and including O(ε3) are kept. In equations (10) and (11), ∇h represents (∂/∂x, ∂/∂y).
Equations (10) and (11) become

z = 0, Lφ+ ζL
∂φ

∂z
+

(
∂

∂t
− V · ∇h

)
(∇φ)2 + Q3 + Q4 = O(ε5) (13)

z = 0,

(
∂

∂t
− V · ∇h

)
φ+ gζ + ζ

∂

∂z

(
∂

∂t
− V · ∇h

)
φ+ 1

2
(∇φ)2 + R3 = O(ε4) (14)

where

L =

(
∂

∂t
− V · ∇h

)2

+ g
∂

∂z
,

Q3 = 1
2
ζ2L

∂2φ

∂z2
+ 1

2
∇φ · ∇(∇φ)2 + ζ

(
∂

∂t
− V · ∇h

)
∂

∂z
(∇φ)2,

R3 = 1
2
ζ2 ∂

2

∂z2

(
∂

∂t
− V · ∇h

)
φ+ 1

2
ζ
∂

∂z
(∇φ)2,

and Q4 is a term of O(ε4), omitted in Dysthe (1979), which is given explicitly in the
Appendix.

Let the velocity potential φ and surface elevation ζ be expanded as

φ = φ̄+ φc + 1
2

[
Bek0zeiθ + B2e

2k0ze2iθ + c.c.
]

(15)

and

ζ = ζ̄ + ζc + 1
2

[
Aeiθ + A2e

2iθ + A3e
3iθ + c.c.

]
, (16)

where θ = k0x− ω0t and c.c. denotes complex conjugate, thus making both φ and ζ
real. Note that we use a form for the complex potential B and amplitude A which is
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consistent with the derivation in § 2, and differs from that used in Dysthe (1979) by
a factor of two. In the following multiple-scales analysis, B and A are both of order
ε and differentiation of B and A with respect to x, y, z or t decreases their order of
magnitude by one. For example, ∂A/∂t is O(ε2) and ∂3B/∂y2∂x is O(ε4). Factors of ε,
which indicate the magnitude of terms explicitly, have been omitted in the expansions
for brevity, as in Dysthe (1979). The potential φ̄ represents the mean flow brought
about by the radiation stress of the wave and φc gives the surface current; ζ̄ and ζc
are the corresponding surface elevations. Dysthe, in his analysis, found that φ̄ was of
order ε2. We follow his analysis including the potential due to the large-scale current,
which we take to be O(ε). As in Brinch-Nielsen, we find B2 to be O(ε4), so we use this
fact to neglect the intermediate O(ε2) and O(ε3) terms to simplify the presentation of
the analysis.

The surface current potential satisfies Laplace’s equation in the fluid and the
linearized Bernoulli and kinematic boundary conditions at the surface, hence the
equations governing φc and ζc are

∇2φc = 0 for z 6 0, (17)(
∂

∂t
− V · ∇h

)
φc + gζc = 0 on z = 0, (18)

and

φcz −
(
∂

∂t
− V · ∇h

)
ζc = 0 on z = 0. (19)

Also, it is useful to note from (18) and (19) that φcz = O(εφcx) = O(ε3).
Details of the analysis following Dysthe (1979) and Brinch-Nielsen (1985) are given

in the Appendix. The analysis results in a dimensional equation valid to O(ε4) in the
form

i

[
∂

∂t
+ cg0

∂

∂x
− V · ∇h

]
B − (gk0)

1/2

8k2
0

(Bxx − 2Byy)− k4
0

2(gk0)1/2
B|B|2 − k0φcxB

=
ik3

0

4(gk0)1/2
B
(
BB∗x − 6BxB

∗)+
i(gk0)

1/2

16k3
0

(Bxxx − 6Byyx) + k0φ̄xB + P1, (20)

where the O(ε4) terms involving the current are

P1 = ik0

(
1

2(gk0)1/2

[
∂

∂t
+ cg0

∂

∂x
− V · ∇h

]
φcx − φcz

)
B − i∇hφc · ∇hB,

and the wave-induced flow is described by equations (A 5), (A 17) and (A 18):

z < 0, ∇2φ̄ = 0,

z = 0,

(
∂

∂t
− (V · ∇h)

)
φ̄+ gζ̄ = O(ε4),

z = 0,
∂φ̄

∂z
− k0

2

(
k0

g

)1/2
∂|B|2
∂x

= O(ε4).


(21)

In addition, the second-harmonic term is found to be

B2 = i
k6

0

2(gk0)3/2
B2|B|2 +

i

2(gk0)1/2

(
BByy − B2

y

)
(22)
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as in Brinch-Nielsen (1985), and the surface elevation terms are

A =
ik0

(gk0)1/2

[
B − i

2k0

Bx +
1

8k0

2

(Bxx − 2Byy)

]
+ i

k5
0

8(gk0)3/2
B|B|2,

A2 = − k
2
0

2g

[
B2 − 2i

k0

BBx

]
,

and

A3 = − 3ik5
0

8(gk0)3/2
B3.


(23)

The current does not enter into expressions (23) for the surface elevation directly at
this order, since the first significant term for ζ would be of order ∇φ (∇·U ) ∼ O(ε4)
and for ζ̄ there is also an O(ε4) U 2 term.

A dimensionless version of equation (20) valid to O(ε4) (hereafter referred to as the
CNLS4 equation) is

iBT − 1
8
(BXX − 2BY Y )− 1

2
B|B|2 − BΦcX

=
i

16
(BXXX − 6BY Y X) + ΦXB +

i

4
B(B B∗

X
− 6B∗BX)

+ i
(

1
2
ΦcXT − ΦcZ

)
B − i∇hΦc · ∇hB, (24)

where B = k2
0B/(gk0)

1/2, Φc = k2
0φc/(gk0)

1/2, Φ = k2
0φ̄/(gk0)

1/2, X = k0(x−{cg0−V1}t),
Y = k0(y + V2t), Z = k0z and T = (gk0)

1/2t. Dimensionless equations corresponding
to (21), (22) and (23) are readily derived. Equation (24) agrees with that in Dysthe
(1979) for φc ≡ 0, except for certain factors of two arising from the present definition
of B and φ̄, and for a slight error which has been noted in previous works. Comparing
this equation to the O(ε3) equation derived in the previous section we note that the
non-dimensional current term f(X,Y , T ) there is equal to ΦcX and that all terms
on the right-hand side of equation (24) are of O(ε4). Equating the left-hand side
of equation (24) to zero gives the O(ε3) current-modified version of the cubic NLS
equation; we will hereafter refer to this as the CNLS3 equation.

4. A specific current: the surface current due to an internal wave

We choose to investigate the range of validity of the CNLS3 and CNLS4 equations
in one horizontal dimension by using the surface current generated by an underlying
internal wave, as discussed in detail in DPS. A simple model is used: the two-layer
model for a stratified ocean. The frequency, wavelength and wavenumber of the
internal wave are taken to be Ω, Λ and K respectively where K = 2π/Λ, Ω = O(εω0)
and K = O(εk0). Also, the phase speed of the internal wave V1 = Ω/K is normally
very much less than that of surface waves of the same wavenumber. The interface
between the two fluids is perturbed slightly so that the problem may be linearized
and a normal mode representation is taken for the velocity potentials in the upper
and lower layers (depths h1 and h2 respectively), and the elevation ζc of the interface.
Application of Laplace’s equation, the linearized Bernoulli and kinematic boundary
conditions (17)–(19), gives the dispersion relation which can be solved in the limit
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h2 → −∞ to obtain Ω2:

Ω2 =
gK(ρ2 − ρ1)

ρ1 − ρ2 cothKh1

, (25)

where ρ1 and ρ2 are the densities in the upper and lower layers respectively. Analytic
forms for the surface elevation ζc and the velocity potential φc in the upper layer can
be found which lead to a surface current of the form

∂φc

∂x̂

∣∣∣∣
z= 0

= Uc cos (Kx̂− Ωt). (26)

Here x̂ is the coordinate parallel to x in the frame of reference where the water is
stationary at depth. If we move into a frame of reference moving with the phase speed
V1 of the internal wave, the resulting current is appropriate for the current-modified
NLS equations, i.e. let x = x̂− V1t, so

∂φc

∂x

∣∣∣∣
z= 0

= Uc cos (Kx)− V1, (27)

which is a slowly varying (if K = O(εk0)), periodic, spatial current independent of
time. We have U0 = −V1, a constant, and we consider currents where U(x) − U0 =
Uc cos (Kx) is relatively small. For presentation purposes, the space coordinate is given
in units of 1/K , whereas the time coordinate is non-dimensionalized with (gK)1/2.
Note that this non-dimensionalization for length based on the wavenumber, K , of
the surface current is in contrast to that based on the wavenumber, k0, of the carrier
wave which leads to equations (8) and (24).

We consider initial conditions of a wavetrain of constant amplitude, with wavenum-
ber k0. This corresponds to surface waves generated by a passing gust of wind, where
the waves that are generated are more or less uniform since they are all forced by the
same wind for a similar duration. As shown by DPS, this initial condition has none
of the special features of waves with constant absolute angular frequency, which have
often been studied because of their analytical convenience (see, for example, Gargett
& Hughes 1972). The plane-wave initial condition is more general, and with varia-
tions in the initial steepness, strength of current and initial wavenumber, provides a
good test for the CNLS3 and CNLS4 equations. If we define δ = Uc/(g/k0)

1/2 and

V̂ 1 = V1/(g/k0)
1/2 to be velocity ratio parameters relating basic velocity components

of the surface current to the phase speed of the carrier wave in the absence of a
current, we find that the non-dimensional current term f(X,Y , T ) in equation (8)
takes the form

δ cos (Kx) = δ cos

[
K

k0

(X + ( 1
2
− V̂ 1)T )

]
. (28)

This form for the current demonstrates the important parameters in the leading-order
CNLS3 equation. First, and probably most importantly, for our theory to be valid we
require δ = O(ε2). Secondly, for the current to remain slowly varying, K = O(εk0).
Thirdly, we note the presence of the ( 1

2
−V̂ 1) term in the phase of the current. The value

V̂ 1 = 1
2

corresponds to the mean value of the current being exactly equal and opposed
to the group velocity of the carrier wave in the absence of a current. We expect a
strong interaction between the current and the surface waves at this value of V̂ 1.

It is physically relevant to consider up to several hundred wavelengths of the short
waves on one wavelength of an internal wave. For example, in an estuarine channel,
experimental data are available for which λ = 0.4 m and Λ = 120 m giving Λ/λ = 300 .
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Here we could have a pycnocline with h1 = 6.0 m with density difference 2.5 parts
per thousand say, and the surface current may have a maximum value of 0.04 m s−1.
These physical values give (δ, V̂ 1) = (0.051, 0.414) and we hereafter refer to this as the
‘standard case’. We also use for comparison an example of a stronger current with a
maximum value of 0.08 m s−1, corresponding to (δ, V̂ 1) = (0.101, 0.414), and a ‘longer’
short-wave initial condition (that is, decreasing k0) which gives (δ, V̂ 1) = (0.051, 0.262).
Note that in figures 1 to 3 we have only taken k0/K = 20 because, in order to
obtain accurate solutions from the fully nonlinear potential solver that we use for
comparison purposes, it is computationally impractical to consider many hundreds of
wavelengths of short waves. However, this too is a physically relevant situation – for
example, consider a greater density difference at a shallower pycnocline such as the
freshwater having low salinity of 10 parts per thousand overlying sea water with
salinity content of 35 parts per thousand with pycnocline depth of 0.77 m. Thus, our
computations directly model the physical situation in which twenty wavelengths of a
short wave arise on an 8 m internal wave with a maximum current of 0.047 m s−1. We
expect that this still shows the generic features of solutions where K = O(εk0). These
values of δ are O(ε2) for values of ak of 0.2 to 0.3, which seem to be sensible values
for this higher-order theory.

5. Results
5.1. Numerical solution

In order to solve the CNLS3 equation, the split-step method used by Weidman &
Herbst (1986) was used. The Fourier method they discussed was employed as we
are concerned with a periodic surface current. The method was extended following
Lo & Mei (1985) to solve the CNLS4 equation. It was not difficult to extend these
numerical methods to include the new current terms. There were two slight differences
between the method employed here and that used by Lo & Mei (1985). First, Lo &
Mei solved the equations in a transformed coordinate system owing to the generation
of numerical noise in the original one; we did not find it necessary to do this as there
was no significant numerical noise in our calculations. Secondly, Lo & Mei (1985)
use a space derivative of φ̄ in their form for ζ given by their equation (2.12); we use
the time derivative (given in this paper by rearrangement of equation (A 17) in the
Appendix) and use a small time step in the numerical routine.

Results are presented as Kζ against Kx̂ at successive non-dimensional times
(gK)1/2t, increasing up the ordinate axis. The maximum and minimum values of
the surface current are indicated by lines (−−−−) and (− · − · −) respectively. The
full lines show surface profiles generated by the fully nonlinear code, and the dotted
lines are results from the equation derived. Surface profiles for comparison are gen-
erated by finding ζ given by (16). Although the dependent computational variables
are simply the modulation amplitude, B, of the short-wave velocity potential and
the velocity potential of the induced current, the full detail of the free-surface shape
and velocity field can be constructed to the same order of approximation using the
relations (23). For the solution of the O(ε3) CNLS3 equation shown in figure 1, the
profiles are given accurate to O(ε2). In the remaining results which show solutions
of the O(ε4) CNLS4 equation, profiles are given accurate to O(ε3) (which includes
the term ζ̄, surface elevation due to the mean flow current). In addition, fourth- and
fifth-order Stokes wave terms are added. Although this is not entirely consistent, we
expect these extra terms to show a better profile for the waves. The corresponding
higher-order terms in the wave modulation that we are ignoring should be insignifi-
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cant until close to the point of ‘breaking’. Details for the construction of these terms
can be found in Schwartz (1973). The elevation scale for figures 1 to 4 is given in the
captions below the figures.

Relative computation times are of interest. As expected, the CNLS3 equation is
solved faster than the CNLS4 equation-the latter taking about 2 minutes to run up
to (gK)1/2t = 58, with time step of 0.01 and 100 spatial Fourier modes. The fully
nonlinear code, however, takes about 12 hours to run the same calculation to breaking
at (gK)1/2t = 56. The computations were done on a Sun Ultra 2/200.

5.2. Discussion

In order to see how well the CNLS3 and CNLS4 equations model the effect of the
interaction between the surface current and the initially sinusoidal short waves, we
compare surface profiles for t > 0 with solutions from the fully nonlinear numerical
solver. Results are presented for times large enough for either the full nonlinear code
to predict ‘breaking’, i.e. there are regions of very high surface curvature where there
are insufficient discretization points to give results within the accuracy required†, or
else until the CNLS3 and CNLS4 solutions cease to be accurate for some reason, such
as the waves no longer being part of a single wavetrain which is the case in the region
between two caustics after a focus, where there are three overlapping wavetrains, or
where there are abrupt changes in wave properties.

Since we have a high-order approximation, we are considering waves that are
approaching breaking. The wave steepness parameter, ak, becomes hard to define
from the wave profile due to the crest–trough asymmetry combined with the relatively
rapid variation of both wave height, crest to trough or vice versa, and of wavelength
however defined. The approximate equations can satisfactorily describe waves which
vary significantly from crest to crest. This success can best be accounted for by noting
that a good measure of the wave’s length scale is 1/k, and a wavelength, 2π/k, is
relatively long compared to 1/k, i.e. (2π)−1 = 0.159 . . . is sufficiently small. Hence
we consider the maximum slope of the water surface. This equals ak for waves of
low steepness, but is not accurate for nonlinear waves of ak > 0.1. For example, the
difference between ak and maximum slope at ak = 0.2 is 2%, and at ak = 0.43 is 24%.
These values have been found by solving the full nonlinear water wave equations
to obtain accurate surface profiles for increasing values of ak, and measuring the
maximum wave slope. They are for steady waves – for unsteady wave breaking,
surface slopes pass 90◦. For this reason, the condition for ‘breaking’ incorporated into
the code which solves the CNLS3 and CNLS4 equations is to halt the calculations
when the slope dζ/dx exceeds a value at which the waves could be expected to evolve
to breaking. We take this value to correspond to ak = 0.40 which gives a maximum
slope dζ/dx = 0.462. We expect waves of maximum slopes above this value to become
unstable due to Tanaka’s (1983) instability, and then to break, since the instability is
localized near the wave crest.

Figure 1 shows results from solving the CNLS3 equation with conditions for the
‘standard case’ when the short waves initially have steepness ak0 = 0.10. In this case,
the fully nonlinear code predicts breaking at (gK)1/2t = 56. One wavelength of the
surface current is shown. For (gK)1/2t < 20, comparison with the fully nonlinear
results is good, but for later times the CNLS3 equation does not accurately model
the speed of the group of steepening waves. However, for all times, the less steep

† The numerical discretization can be enhanced to enable wave overturning to be described, but
such extra precision is not warranted in this case.



The current-modified nonlinear Schrödinger equation 345
E

le
va

ti
on

3 4 5 6 7 8 9

Kx̂

(gK )1/2t

54

48

42

36

30

24

18

12

6

0

Figure 1. Surface profiles comparing the O(ε3) CNLS3 solutions (dotted line) with results from
the fully nonlinear potential solver (full line), for the ‘standard case’: each small interval on the
vertical axis represents an elevation Kζ = 0.005 which is equivalent to a vertical exaggeration of
approximately 10 : 1, time, t, is non-dimensionalized with (gK)1/2, (δ, γ) = (0.051, 2.416) and initial
steepness ak0 = 0.10. Breaking occurred for the fully nonlinear calculations at (gK)1/2t = 56.

waves are modelled moderately well. We would not expect the CNLS3 equation to
model the speed of the steep group of waves as it does not include terms which
increase group velocity as the steepness of the waves increases, i.e. the B2Bx term in
the CNLS4 equation. In this case the CNLS3 solution reached ak = 0.40 just after
(gK)1/2t = 58.

Figure 2 compares the same results from the fully nonlinear solver to results from
the CNLS4 equation. Results are now very encouraging. Away from the steep group
of waves, the CNLS4 equation models the waves very accurately for all times. The
region of steep waves is modelled to graphical accuracy up to (gK)1/2t ∼ 35. For later
times, the steep waves predicted by the CNLS4 are slower than those from the fully
nonlinear potential solver. One reason for the breakdown of the solution is that the
derivation of the CNLS4 equation is based on the assumption that the waves are all
part of a slowly varying wavetrain; however, at Kx̂ ∼ 2π, (gK)1/2t = 54 we see that
wavenumber changes are rapid, thus causing the solutions from the CNLS4 equation
to deteriorate. ‘Breaking’ is predicted by the CNLS4 equation just after (gK)1/2t = 58.

Figure 3 shows results from the ‘standard case’ when the short waves have initial
steepness ak0 = 0.01. Here, the fully nonlinear code does not predict breaking within
the time considered. As is discussed in DPS, in this case the interaction of the current
with the short surface waves is well predicted by linear ray theory. The waves are
focused at (gK)1/2t ∼ 60 and at later times there is a region of three overlapping
wavetrains between two caustics. The caustic positions predicted by linear ray theory
are shown by the long dashes ( ) on figure 3. Between the caustics, the waves
have become more irregular. As the derivation of the nonlinear Schrödinger equation
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Figure 2. Surface profiles comparing the O(ε4) CNLS4 solutions (dotted line) with results from
the fully nonlinear potential solver (full line), for the ‘standard case’: each small interval on the
vertical axis represents an elevation Kζ = 0.005 which is equivalent to a vertical exaggeration of
approximately 10 : 1, time, t, is non-dimensionalized with (gK)1/2, (δ, γ) = (0.051, 2.416) and initial
steepness ak0 = 0.10. Breaking occurred for the fully nonlinear calculations at (gK)1/2t = 56.

is based on the assumption that the waves form part of a single, slowly varying
wavetrain, we would not expect any prediction by the CNLS4 equation in this region
of overlapping wavetrains to be accurate, and this is indeed the case. Away from this
region, where the waves are a single wavetrain, the results compare relatively well.
However, the fully nonlinear results show a short, steep group of waves generated
at the focus ((gK)1/2t ∼ 60), which propagates up the left-hand caustic. This group
is not modelled accurately by the CNLS4 equation once the focal region is passed
owing to the fast variation of wave properties corresponding to three superposed
wavetrains; however, the group’s creation in the focal region is well described by the
CNLS4 equation.

An additional assumption made in the analysis leading to the CNLS3 and CNLS4

equations is that the current variation must be small. In non-dimensional terms, for
the sinusoidal current, this means that δ = O(ε2). Figure 4 shows the final stages
before wave breaking for a current twice as strong as that considered previously,
and with an initial condition as considered in figure 1, i.e. ak0 = 0.10 (thus doubling
δ). The fully nonlinear code predicts breaking at (gK)1/2t = 33, a time considerably
earlier than with a weaker current – an observation which can be explained in terms
of the time to focus predicted by the linear ray theory (see DPS for further discussion).
The modelling by the CNLS4 equation is still good for this stronger current, with the
longer less steep waves being very well represented, although, as before, the steeper,
short waves are predicted by the CNLS4 equation to travel slower. Note that this figure
shows only half a wavelength of the surface current. The fully nonlinear results show
that the wave which ‘breaks’ is at the start of the group of steep waves. The CNLS4
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Figure 3. Surface profiles comparing the O(ε4) CNLS4 solutions (dotted line) with results from
the fully nonlinear potential solver (full line), for the ‘standard case’, the position of the caustics
predicted by linear ray theory being indicated by long dashes: each small interval on the vertical axis
represents an elevation Kζ = 0.0005 which is equivalent to a vertical exaggeration of approximately
100 : 1, time, t, is non-dimensionalized with (gK)1/2, (δ, γ) = (0.051, 2.416) and initial steepness
ak0 = 0.01. No breaking occurred.
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Figure 4. Final stages before wave breaking comparing the O(ε4) CNLS4 solutions (dotted line) with
results from the fully nonlinear potential solver (full line), for a stronger current: each small interval
on the vertical axis represents an elevation Kζ = 0.01 which is equivalent to a vertical exaggeration
of approximately 3 : 1, time, t, is non-dimensionalized with (gK)1/2, (δ, γ) = (0.101, 2.416) and initial
steepness ak0 = 0.10. Breaking occurred for the fully nonlinear calculations at (gK)1/2t = 33.

equation cannot be expected to model the final evolution before breaking, just as the
small-amplitude perturbation for Stokes waves fails to describe the steepest waves.

In DPS, figure 13 shows the time of breaking against initial steepness for the
standard case, a stronger current and when initially ‘longer’ short waves are taken.
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Figure 5. Time of breaking against initial steepness of the short waves: the solid line shows fully
nonlinear results, the dotted line shows the CNLS3 results, and the dashed line shows the CNLS4

results. The crosses indicate where the waves have reached ‘breaking’ – corresponding to regions of
high curvature in the case of the fully nonlinear calculations, and a maximum wave slope of 0.462
in the weakly nonlinear calculations.

Time (gK)1/2t Fully nonlinear CNLS4

0 0.10 0.10
10 0.12 0.12
20 0.15 0.15
30 0.19 0.18
40 0.24 0.23
50 0.34 0.31
52 0.39 0.36
54 0.45 0.43

‘breaking’ (gK)1/2t = 56 (gK)1/2t = 58

Table 1. Maximum slope (to 2 decimal places) for the ‘standard case’ from the fully nonlinear
numerical solver and the CNLS4 equation with ak0 = 0.10 initially, (δ, γ) = (0.051, 2.416).

Here figure 5 shows the same results along with the CNLS3 equation (dotted line)
and CNLS4 equation (dashed line) predictions for breaking – that is when ak = 0.40.
We see that the prediction for the time of breaking for the CNLS4 equation for the
standard case is very accurate. For a stronger current, predicted times for breaking are
less accurate, as expected. Also for ‘longer’ short waves, the CNLS4 equation predicts
breaking to occur much earlier than is predicted by the fully nonlinear code. This
is because K/k0 has increased, thus making the surface current relatively less slowly
varying – see the non-dimensional form for the current given by (28) for verification
of this. For almost all cases, the CNLS3 equation predicts breaking later than the
CNLS4 equation.

Table 1 compares values of maximum slope of the waves with time for the fully
nonlinear solver to that predicted by the CNLS4 equation, for the ‘standard case’
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with an initial condition ak0 = 0.10 as shown in figure 2. This demonstrates that the
weakly nonlinear theory leading to the CNLS4 equation does not predict quite as
large steepnesses as that predicted by the fully nonlinear code, as we could expect
from a theory that neglects fully nonlinear terms which are important in regions
where waves are both steepening and close to breaking.

6. Conclusion
In this paper we have derived a current-modified nonlinear Schrödinger equation.

Two forms of the equation have been discussed: one valid to O(ε3), and one to
O(ε4), where ε = ak is a measure of the steepness. As with the standard nonlinear
Schrödinger equation, solutions are valid when waves form part of a slowly varying
wavetrain, and solutions break down when the variation of wave properties is too
fast. In addition, the current-modified nonlinear Schrödinger equation is valid for
currents that are large scale relative to the short surface waves and have a small, slow
variation from a mean value.

In order to check the validity of the equation numerically in one horizontal
dimension, we compare surface profiles with those obtained from a fully nonlinear
potential solver. We have chosen for comparison purposes to study the evolution of
waves on a large-scale current (such as may be due to an underlying internal wave)
from an initial constant-wavenumber wavetrain. We find that the O(ε3) equation
compares moderately well, and the O(ε4) equation compares very well, up to the
point where weakly nonlinear theory is no longer valid, i.e. when the wave becomes
almost steep enough to break.

For the particular example of a surface current chosen, we have identified situations
in which solutions to the new equation compare well, and others in which they
become less accurate. In addition, we have made an investigation into the ‘time of
breaking’. For solutions of the current-modified nonlinear Schrödinger equation, we
have specified a critical slope criterion for ‘breaking’, which we have taken to be
ak = 0.40, dζ/dx = 0.462, whereas the fully nonlinear code predicts ‘breaking’ when
there are insufficient discretization points in regions of high curvature (such as at a
sharp or overturning crest) to give results within the accuracy required.

Further studies could follow the work of Trulsen & Dysthe (1996, 1997) to include
the extra terms to make the equation valid for a broader bandwidth, and observe
the nature of the frequency downshift in the presence of a current. Also valuable
would be a comparison of the results from our numerical calculations with those
from experiments, as in Lo & Mei (1985) and Trulsen, Stansberg & Velarde (1999)
for the case when no current is present, and as Bakhanov et al. (1997) have done
for the CNLS3 equation. Another form of current that is of interest has shear in the
vertical. That type of current has been discussed by Pullin & Grimshaw (1986) and,
for the particular case of Dysthe’s (1979) MNLS equation, by Dhar & Das (1994).

We would like to acknowledge the financial support of the DERA; and both Alice
Donato and Mark Jervis for their work on the fully nonlinear code.

Appendix
The analysis involves the substitution of the expansions (15) and (16) for φ and

ζ in equations (13) and (14). Fourier coefficients are equated. Any remaining ‘slow
variation’ terms are real and only required to O(ε3); these govern the modulation of
the potential φ̄ due to waves.
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In two dimensions, Laplace’s equation leads to a useful result which is used
throughout the analysis:

Bz = −iBx − 1

2k0

Byy − i

2k2
0

Bxyy + O(ε5). (A 1)

This is can proved by using an iterative procedure. First, directly from Laplace’s
equation and the eiθ term in (15)

Bz + iBx = − 1

2k0

∇2B = O(ε3). (A 2)

Differentiation with respect to x and z, and a little manipulation gives

Bzz + Bxx =
i

k0

∂

∂x
∇2B + O(ε5), (A 3)

so

∇2B = Byy +
i

k0

Bxyy + O(ε5), (A 4)

where the suffix notation for derivatives is being used. Consideration of both equations
(A 2) and (A 4) leads to equation (A 1). This relation also holds for B2. Evaluating
the slow modulation terms gives

∇2φ̄ = 0 for z < 0. (A 5)

We now go through the terms in equation (13) one by one, and evaluate their
contribution at z = 0. This generates a nonlinear, current-modified Schrödinger
equation, accurate to O(ε4). Equation (14) is used to evaluate the surface elevation ζ.

The Lφ term gives a contribution

Lφ = Lφ̄+

[{
1
2
(Btt − 2(V · ∇h)Bx + (V · ∇h)2B)− g

4k0

(
Byy − i

k0

Bxyy

)

−i(gk0)
1/2(Bt + cg0Bx − (V · ∇h)B)

}
eiθ + c.c.

]
− [gk0B2e

2iθ + c.c.
]
. (A 6)

Dysthe (1979) finds no contribution from the second term in equation (13). However,
Brinch-Nielsen finds a second-harmonic O(ε4) term here; we agree, and in addition,
a current term is present. We find

ζL
∂φ

∂z
=

[
−Ak2

0

(
(gk0)

1/2

2
φcxB +

k3
0

4
B|B|2

)
e2iθ + c.c.

]
+ slow variation terms of O(ε4). (A 7)

It is next useful to find a form for (∇φ)2 in order to evaluate many of the remaining
terms:

(∇φ)2 = e2k0z
(
k2

0 |B|2 + ik0(BB
∗
x − B∗Bx) + BxB

∗
x

)
+ 1

2
ByB

∗
y − 1

2
(BB∗yy + B∗Byy)

+(∇hφc)2 +
[
(ik0B(Mφ̄+ Mφc) + ∇hB · ∇hφc)ek0zeiθ + c.c.

]
+
[

1
4
(B2

y − BByy)e2k0ze2iθ + c.c.
]

(A 8)

where

M =
∂

∂x
− i

∂

∂z
.
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This allows us to evaluate the third term in equation (13):(
∂

∂t
− V · ∇h

)
(∇φ)2 =

[{
k0(gk0)

1/2B(Mφc + Mφ̄) + N(φc, B)
}

eiθ + c.c.
]

+

[{
−i

(gk0)
1/2

2
(B2

y − BByy)
}

e2iθ + c.c.

]

− (gk0)
1/2k0

2

∂|B|2
∂x

+ slow variation terms of O(ε4) (A 9)

where

N(φc, B) = ik0B

(
∂

∂t
− (V · ∇h)

)
φcx − i(gk0)

1/2
(

3
2
φcxBx + φcyBy

)
.

We now move on to evaluate the terms of Q3. The first term has no contribution
to the relevant order. The second term generates an O(ε4) term:

1
2
∇φ · ∇(∇φ)2 =

[
k3

0

2
B
(
k0|B|2 + 2i(BB∗x − B∗Bx)

)
eiθ + c.c.

]
, (A 10)

and the third term contributes

ζ

(
∂

∂t
− V · ∇h

)
∂

∂z
((∇φ)2) =

[
−i
k3

0

2
B
∂|B|2
∂x

eiθ + c.c.

]
+

[
i
k3

0

2
φcxB

2e2iθ + c.c.

]
+ slow variation terms of O(ε4). (A 11)

Dysthe (1979) neglects all terms of Q4. There is an O(ε4) term present, but it is a
second harmonic and therefore does not alter Dysthe’s analysis. For completeness,
we state

Q4 = 1
6
ζ3 ∂

3

∂z3
(Lφ) + 1

2
ζ2 ∂

∂z

(
∂

∂t
− V · ∇h ∂

∂x

)
((∇φ)2) + 1

2
ζ
∂

∂z

(∇φ · ∇(∇φ)2
)
.

(A 12)

Only the third term gives any contribution to the relevant order:

1
2
ζ
∂

∂z

(∇φ · ∇(∇φ)2
)

=

[
i

3k6
0

4(gk0)1/2
B2|B|2e2iθ + c.c.

]
+ slow variation terms of O(ε4). (A 13)

Substitution of equations (A 6)–(A 13) in equation (13) and equating the O(eiθ)
coefficients leads to an equation for the complex potential B, valid up to O(ε4):

i(gk0)
1/2(Bt + cg0Bx − (V · ∇h)B)

− 1
2
(Btt − 2(V · ∇h)Bt + (V · ∇h)2B) +

g

4k0

Byy − k0(gk0)
1/2φcxB − k4

0

2
B|B|2

= − ik0(gk0)
1/2φczB − ig

4k2
0

Bxyy + ik3
0B(BB∗x − B∗Bx)

+ k0(gk0)
1/2Mφ̄B + N(φc, B)− i

k3
0

2
B
∂|B|2
∂x

. (A 14)
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Iterating this equation to remove the Btt and Bxt terms leads to the O(ε3) left-hand
side of the equation

i(gk0)
1/2(Bt + cg0Bx − (V · ∇h)B)− g

8k0

(Bxx − 2Byy)− k0(gk0)
1/2Bφcx − k4

0

2
B|B|2

(A 15)

and the O(ε4) right-hand side is

ig

16k2
0

(
Bxxx − 6Bxyy

)
+ i

k3
0

4
B
(
BB∗x − 6B∗Bx

)
+ k0(gk0)

1/2Bφ̄x + (gk0)
1/2

×
[
ik0

{
1

2(gk0)1/2

(
∂

∂t
+ cg0

∂

∂x
− (V · ∇h)

)
φcx − φcz

}
− i∇hφc · ∇hB

]
. (A 16)

Simplification and non-dimensionalization, as in Dysthe (1979), leads to equation
(24).

Equating coefficients of O(e2iθ) in (13) leads to a form for B2 given by (22) and
finally, evaluation of the slow modulation terms give boundary conditions for φ̄:

z = 0,

(
∂

∂t
− (V · ∇h)

)
φ̄+ gζ̄ = O(ε4), (A 17)

z = 0,
∂φ̄

∂z
− k0

2

(
k0

g

)1/2
∂|B|2
∂x

= O(ε4). (A 18)
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